Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

logo

What is facial recognition?

Facial recognition is one of the most controversial topics in the technology sector today. Since first being explored in the 1960s, this biometric identification technique has seen consistent growth in accuracy and popularity. By 2020, following the introduction of Face ID on Apple iPhones three years earlier, the global face recognition market had reached a value of USD $3.72 billion. By 2026, this is projected to more than treble to USD $11.62 billion.

The controversy surrounding facial recognition technology is primarily concerned with privacy. One of the areas expected to make a large contribution to the growth in face recognition is government programmes. The Chinese government currently utilises an extensive public surveillance system – 54% of the world’s surveillance cameras are located in China – and the USA is rolling out facial recognition in airports across the country.

Who uses facial recognition?

There are two main types of facial recognition: one-to-one and public. One-to-one systems are designed for purposes such as access control, where faces are scanned one by one and then compared against a pre-defined database of users to grant or deny them access. Public face recognition systems are generally used for surveillance purposes to scan many different faces at once and identify any known individuals.

  • Mobile phones. A one-to-one method for unlocking smartphones first introduced in Apple’s iPhone X.
  • Social media. When you put a photo on Facebook and it suggests other people to tag – that’s facial recognition.
  • Casinos. A public face recognition system that scans the room to identify persons of interest or concern.
  • Retail. Similarly to casinos, shops can identify shoplifters using surveillance recognition cameras.
  • Airports. The US government has started rolling out facial recognition technology in airports, to identify people with expired visas or ongoing criminal investigations.

 

Highly accurate identification of individuals
Rapid processing for improved efficiency
The ultimate in user convenience

How does facial recognition work?

Facial recognition technology exploits the natural variation and uniqueness of human beings’ facial features as a means of verifying identity. Specialist cameras analyse the shape and position of facial features and create a biometric data map of the face. That biometric map is then compared to the system’s database to establish whether or not the individual is recognised.

In general, there are 4 basic steps to identifying faces:

  • Detection of the face, whether a single individual or from a crowd.
  • Analysis of the face, where an image is captured and digitally examined.
  • Conversion of the face to biometric data, in a face map or faceprint.
  • Comparison with existing database faceprints to establish recognition.

The earliest attempts at computer-driven face recognition involved pinpointing the coordinates of certain facial features from a photograph onto a graphics tablet. Those points were then used to calculate 20 different distances between the points. A computer could then compare the distance calculations for different photographs in order to find potential matches.

As computer technology advanced, so did the sophistication and accuracy of face recognition. Initially, recognition was based mainly on photographs of people’s faces. From the 1990s onwards, the focus has shifted to live facial detection, which can find and analyse individuals’ faces in real time, often from busy or low-resolution images. Modern techniques use a wide range of technologies; for example, Face ID on iPhones works by projecting thousands of infrared dots onto the user’s face and generating a map of the contours of the face.

Facial recognition in access control

Facial recognition has been growing steadily in popularity in access control systems for over a decade. The onset of the COVID-19 pandemic additionally provided the backdrop for a sudden and sharp increase in demand for facial recognition technology. As a completely touchless solution, facial recognition eliminates the physical contact that other systems such as fingerprint and iris scanners require.

In access control, face recognition systems are, by their nature, one-to-one identification methods. A single individual approaches the camera, and their face is scanned and compared to the existing database of users. As well as being touch-free, facial recognition offers an extremely rapid and reliable access control solution. This technology is now faster, more efficient, and more accurate than the human eye.

Additionally, face recognition is imbued with the general security benefits of biometric authentication systems.

iface™ by CDVI

The ievo iface™ is an advanced facial recognition terminal that matches up to 20,000 faces in just 1 second.

With one camera for visible light and another for near-infrared light (NIR), faces are detected and analysed even in low ambient lighting conditions. iface™ offers a new level of accuracy, reliability, and speed for biometric security, as well as a hygienic touch-free solution.

  • Simple integration with access control
  • Built-in MIFARE DESFire card reader
  • International language support
Extremely rapid identification in just 1 second
Dual-camera model for optimised facial matching & detection
Best-in-class octa-core processor
biometric fingerprint identification access control

Interested in biometrics?

We manufacture best-in-class fingerprint readers too! Whether you need a simple in-and-out biometric solution or a high-security system with end-to-end encryption, spoof detection, and outdoor readers, our ievo range has something for you.